Microfluidics

TeamResearch topicsPublicationsProjectsCollaborationsPatentsBooks

Tomasz Kaminski
PI - Tomasz Kaminski, Ph.D. Eng
Google Scholar orcid publons
E-mail: ts.kaminski2@uw.edu.pl
Research area:

- Microfluidics for ultrahigh-throughput screening
- Single-cell genomics

Ewa Poniecka
Postdoc - Ewa Poniecka, Ph.D.
E-mail: e.poniecka@uw.edu.pl
Research area:

- Single-cell genomics

Maria Dabrowska
Ph.D. student - Maria Dabrowska, M.Sc.
E-mail: m.dabrowska@biol.uw.edu.pl
Research area:

- Biodegradation of organic pollutants and anaerobic digestion

Luca Potenza
Ph.D. student - Luca Potenza, M.Sc.
E-mail: l.potenza@student.uw.edu.pl
Research area:

- Microfluidics for ultrahigh-throughput screening
- Biodegradation of organic pollutants and anaerobic digestion

Luca Potenza
Research specialist - Łukasz Kozoń, M.Sc.
E-mail: lukaszkozon@uw.edu.pl
Research area:

- Microfluidics for ultrahigh-throughput screening
Master students
Mikołaj Iwan
Julia Karbowska
Joanna Rosińska
Klaudia Staśkiewicz

Former members:
Marco Gunthel, Ph.D. (Former Postdoc)
Microfluidics for ultrahigh-throughput screening

We develop and implement ultrahigh-throughput technologies that will allow us to select the most efficient microbial consortia from thousands or even millions of combinations of environmental strains or microbial sub-populations. Droplet microfluidics offers an unprecedented increase in the number of reactions (up to 100 million), that can be measured within a single day using optical readouts, such as fluorescence or absorbance. The detection and sorting of droplets can be based on the bacterial growth or presence of detectable products of bioconversion. The most active strains selected using microfluidic ultrahigh throughput methods are then characterized using genomic and phenotypic analysis.

Single-cell genomics

Organisms are built of a large number of diverse and highly specialized cells. To better understand the roles of each cell, we should study them at the single-cell level. One of the most significant achievements of analytical sciences in the last ten years was implementing a droplet microfluidic technology for analyzing single cells using RNA sequencing (RNA-seq). Droplet-based profiling of single-cell transcriptomes allowed for a very detailed description of the physiological state of thousands of single cells and led to an efficient determination of cell types, trajectories, and interactions. These methods are especially indispensable in research fields dealing with highly heterogeneous tissues – such as oncology, immunology, embryology, and other areas of biomedical research. In our research projects, we are applying already established unique techniques, as well as developing novel multi-step microdroplet assays to study transcriptomes and genomes of single cells.

  • D.S. Fernández, O.J. Klein, T.S. Kaminski, P.Y. Colin, F. Hollfelder. Ultrahigh-throughput directed evolution of a metal-free α/β-hydrolase with a Cys-His-Asp triad into an efficient phosphotriesterase. bioRxiv, doi.org/10.1101/2022.02.14.480337.
  • F. Salmen, J. De Jonghe, T. S. Kaminski, A. Alemany, G. Parada, J. Verity-Legg, A. Yanagida, T. N Kohler, N. Battich, F. van den Brekel, A. L. Ellermann, A. Martinez-Arias, J. Nichols, M. Hemberg, F. Hollfelder, A. van Oudenaarden. High-throughput total RNA sequencing in single cells using VASA-seq. Nature Biotechnology, 2022, doi.org/10.1038/s41587-022-01361-8
  • Klaus, P.J. Zurek, T.S. Kaminski, A. Pushpanath, K. Neufeld, F. Hollfelder. Ultrahigh-Throughput Detection of Enzymatic Alcohol Dehydrogenase Activity in Microfluidic Droplets with a Direct Fluorogenic Assay. ChemBioChem 2021, 22, 3292 –3299.
  • Y.T. Kao, T.S. Kaminski, W. Postek, J. Guzowski, K. Makuch, A. Ruszczak, A. von Stetten, R. Zengerle, P. Garstecki. Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing. Lab on a Chip, 2020, 20, 54-63.
  • A. Czekalska, T.S. Kaminski, K. Makuch, P. Garstecki. Passive and parallel microfluidic formation of droplet interface bilayers (DIBs) for measurement of leakage of small molecules through artificial phospholipid membranes. Sensors and Actuators B: Chemical, 2019, 286, 258-265.
  • Opalski, T. S. Kaminski, P. Garstecki. Droplet microfluidics as a tool for generation of granular matters and functional emulsions. KONA Powder and Particle Journal, 2019, 2019004.
  • P. Postek, P. Gargulinski, O. Scheler, T. S. Kaminski, P. Garstecki. Microfluidic screening of antibiotic susceptibility at a single-cell level shows inoculum effect of cefotaxime in E. coli. Lab on a Chip, 2018, 18, 3668-3677.
  • S. Kaminski*, P. Garstecki* (*co-corresponding author). Controlled droplet microfluidic systems for multistep chemical and biological assays. Chemical Society Reviews, 2017, 46, 6210-6226.
  • Postek, T. S. Kaminski, P. Garstecki. A precise and accurate microfluidic droplet dilutor. Analyst, 2017, 142, 2901-2911.
  • Scheler, N. Pacocha, P.R. Debski, A. Ruszczak, T. S. Kaminski, P. Garstecki. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over dynamic range of 6 logs and beyond. Lab on a Chip, 2017, 17, 1980-1987.
  • A. Czekalska, T.S. Kaminski, M. Horka, S. Jakieła, P. Garstecki. An automated microfluidic system for generation of Droplet Interface Bilayers networks. Micromachines, 2017, 8, 93.
  • Postek, T. S. Kaminski, P. Garstecki. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. Lab on a Chip, 2017, 17, 1323-1331.
  • Sewastianik, M. Szydlowski, E. Jablonska, E. Bialopiotrowicz, P. Kiliszek, P. Gorniak, A. Polak, M. Prochorec-Sobieszek, A. Szumera-Cieckiewicz, T. S. Kaminski, S. Markowicz, E. Nowak, M. A. Grygorowicz, K. Warzocha, P. Juszczynski. FOXO1 is a TXN- and p300-dependent sensor and effector of oxidative stress in diffuse large B-cell lymphomas characterized by increased oxidative metabolism. Oncogene, 2016 35, 5989–6000.
  • S. Kaminski*, O. Scheler*, (*equal contribution), P. Garstecki. Droplet microfluidics for microbiology: techniques, applications and challenges. Lab on a Chip, 2016, 16, 2168-2187.
  • Scheler, T. S. Kaminski, A. Ruszczak, P. Garstecki. Dodecylresorufin (C12R) outperforms resorufin in micro-droplet bacterial assays. ACS Appl. Mater. Interfaces, 2016, 8, 11318–11325.
  • Derzsi*, T. S. Kaminski* (*equal contribution), P. Garstecki. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette. Lab on a Chip, 2016, 16, 893-901. [IF2015 = 5.586].
  • Debski, K. Gewartowski, M. Sulima, T. S. Kaminski, P. Garstecki. Rational design of digital assays. Analytical Chemistry, 2015, 87 (16), 8203–8209
  • Czekalska*, T. S. Kaminski* (*equal contribution), S. Jakiela, K. T. Sapra, H, Bayley, P. Garstecki. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab On a Chip, 2015, 15, 541-548.
  • Hou, L. Tabaka M., Sun, P. Trochimczyk, T. S. Kaminski, T. Kalwarczyk, Zhang X. R. Holyst. A Flexible Fluorescence Correlation Spectroscopy Based Method for Quantification of the DNA Double Labelling Efficiency with Precision Control. Laser Physics Letters, 2014, 11, 085602.
  • Hou, L. Sun, S. A. Wieczorek, T. Kalwarczyk, T. S. Kaminski, R. Holyst. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays. Biosensors and Bioelectronics, 2014, 51, 8-15.
  • Jakiela*, T. S. Kaminski* (*equal contribution), O. Cybulski, D.B. Weibel, P. Garstecki. Bacterial growth and adaptation in microdroplet chemostats. Angewandte Chemie Int. Ed., 2013, 52, 8908-8911.
  • S. Kaminski, S. Jakiela, M. Czekalska, W. Postek P. Garstecki. Automated and rapid generation of libraries of nL droplets. Lab on a Chip, 2012, 12, 3995-4002.
  • Hou, S. A. Wieczorek, T. S. Kaminski, N. Ziebacz, M. Tabaka, N. A. Sorto, M. H. Foss, J. T. Shaw, M. Thanbichler, D. B. Weibel, R. Holyst, P. Garstecki. Characterization of Caulobacter crescentus FtsZ using dynamic light scattering. Journal of Biological Chemistry, 2012, 287 (28), 23878-23886.
  • Churski, T. S. Kaminski, S. Jakiela, W. Kamysz, W. Baranska-Rybak, D. B. Weibel, P. Garstecki. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab On a Chip, 2012, 12, 1629 – 1637.
  • Hou, N. Ziebacz, S.A. Wieczorek, E. Kalwarczyk, V. Sashuk, T. Kalwarczyk, T. S. Kaminski, R. Holyst. Formation and structure of PEI/DNA complexes: quantitative analysis. Soft Matter, 2011, 7, 6967-6972.
  • Hou, N. Ziebacz, T. Kalwarczyk, T. S. Kaminski, S.A. Wieczorek, R. Holyst. Influence of Nano-viscosity and Depletion Interactions on Cleavage of DNA by Enzymes in Glycerol and Poly(ethylene) Glycol Solutions: Qualitative Analysis. Soft Matter, 2011, 7, 3092-3099.

Ongoing

Benchmarking human tissue culture systems that mimic the tumor microenvironment

Project ID: 2021/41/B/NZ7/03786
Funding agency: National Science Centre, Poland
Duration: 2022-2026
Principal investigator at University of Warsaw: T. Kaminski
Project partners: M. Nees project coordinator (Medical University of Lublin; Poland), M. Tabaka (Institute of Physical Chemistry, Polish Academy of Science; Poland)
Project description: Read more
Project outcome:

High-throughput droplet microfluidics for dissecting cellular interactions

Project ID: 2021/43/D/ST4/03291
Funding agency: National Science Centre, Poland
Duration: 2022-2025
Principal investigator: T. Kaminski
Project description: Read more
Project outcome:

Fly ashes as the precursors of functionalized materials for applications in environmental engineering, civil engineering and agriculture

Project ID: POIR.04.04.00-00-14E6/18
Funding agency: Foundation for Polish Science, Poland
Duration: 2019-2023
Principal investigators at University of Warsaw: L. Drewniak; group leaders: T. Kaminski and K. Pranaw
Project partners: W. Franus project coordinator (Technical University of Lublin; Poland), T. Bajda (AGH University of Science and Technology; Poland)
Project description: Read more
Project outcome: Publication #1 <> Publication #2 <> Publication #3

International patents
  • Kaminski, P. Garstecki. Method for splitting droplets in microfluidic junction and system for splitting droplets in microfluidic junction. Patent GB2495182 filed 23 February 2016.
  • Czekalska, T. Kaminski, P. Garstecki. Microfluidic system, in particular for automated generation of phospholipid bilayers and testing of membrane protein activity. Patent FI 125616 granted on 15 December 2015.
  • Jakiela, T. Kaminski, P. Garstecki. Verfahren zur Teilung von Tropfen an einer mikrofluidischen Kreuzung. Patents CH 705287 granted on 13 September 2013.
  • Jakiela, T. Kaminski, P. Garstecki. Verfahren zur Teilung von Tropfen an einer mikrofluidischen Kreuzung. Patent CH 705288 granted on 13 September 2013.
  • Garstecki, P. Debski, M. Oszmaniec, Kaminski, A. Warchulski. Method for performing quantification assays. Patent EP2780470 granted on 14 September 2016. (based on patent applications EP12805938 filed on 19 October 2012.
  • Churski, P. Korczyk, T. Kaminski, S. Jakiela, M. Izydorzak, S. Makulska, P. Garstecki. System and Method for Automated Generation and Handling of Liquid Mixtures. US patent 9,132,396granted on 15 September 2015; Russian patent RU 2583068 granted on 08 April 2016.
Internation patent applications
  • de Jonghe, T. Kaminski, F. Hollfelder. Modular microfluidic devices, systems and methods for total RNA analyses. PCT Patent Application PCT/GB2021/052112 filed 13 August 2021.
  • Kaminski, J. de Jonghe, F. Hollfelder. Microfluidic modular systems, devices and methods. UK Patent Application No 2012744.5 filed 14 August 2020.
  • Salmen, J. de Jonghe, T. Kaminski, F. Hollfelder, A. van Oudenaarden. Modular microfluidic devices, systems and methods for total RNA analyses. UK Patent Application No 2012730.4 filed 14 August 2020.
  • Jakiela, T. Kaminski, P. Garstecki. Method for splitting droplets on demand in microfluidic junction. Patent Application WO/2013/014215 filed 31 January 2013, US20140147908 A1 filed 29 May 2014, EP2736640 A1 filed 4 June 2014.
  • Korczyk, L. Derzsi, T. Kaminski, S. Jakiela, P. Garstecki. Microfluidic device for performing operations on microdroplets. Patent Application WO/2013/160408 filed 31 November 2013.
Polish patents
  • Kamiński, P. Garstecki. Sposób dzielenia kropel w złączu mikroprzepływowym i układ do dzielenia kropel w złączu mikroprzepływowym. Polish Patent 229042 granted on 15 December 2017 (based on patent application P‑396493 filed on 30 September 2011).
  • Hou, L. Sun, S. A. Wieczorek, T. Kalwarczyk, T. Kaminski, R. Holyst. Sposób wyznaczania wydajności podwójnego znakowania dwuniciowego DNA barwnikiem fluorescencyjnym z zastosowaniem spektroskopii korelacji fluorescencji oraz jego zastosowanie w analizie biochemicznej. Polish Patent granted on 9 December 2015 (based on patent application P.402764 filed on 14 February 2013).
  • Czekalska, T. Kamiński, P. Garstecki. Mikroprzepływowy układ zwłaszcza do automatycznego tworzenia dwuwarstw fosfolipidowych i badania aktywności białek błonowych. Polish Patent 223410 granted on 10 December 2015 (based on patent application P.405321 filed on 12 September 2013).
  • Kamiński, M. Czekalska, P. Garstecki. Sposób automatycznego tworzenia dwuwarstw fosfolipidowych i/lub badania aktywności białek błonowych i/lub regulacji stężenia białek błonowych.”. Polish Patent 224135 granted on 20 April 2016 (based on patent application P.405819 filed on 29 October 2013).
  • Kamiński, M. Czekalska, P. Garstecki. Sposób automatycznego tworzenia dwuwarstw fosfolipidowych i/lub badania aktywności białek błonowych i/lub regulacji stężenia białek błonowych.”. Polish Patent 225871 granted on 09 December 2016 (based on patent application P.410696 filed on 31 December 2014).
Polish patent applications
  • Churski, T. Kamiński, S. Jakieła, M. Izydorzak, S. Makulska, P. Garstecki. Układ do zasilania podukładu mikroprzepływowego płynami i odpowiedni podukład mikroprzepływowy. Patent application P-393619 filed on 11 January 2011.
  • Jakieła, T. Kamiński, P. Garstecki. Sposób dzielenia kropel na żądanie w złączu mikroprzepływowym. Patent application P-395776 filed on 27 July 2011.
  • Jakieła, T. Kamiński, P. Garstecki. Sposób dzielenia kropel na żądanie w złączu mikroprzepływowym. Patent application P-395777 filed on 27 July 2011.
  • Jakieła, T. Kamiński, K. Churski, P. Garstecki. Sposób dzielenia kropel na żądanie w złączu mikroprzepływowym. Patent application P-395778 filed on 27 July 2011.
  • Dębski, T. Kamiński, P. Garstecki, A. Warchulski. Sposób przeprowadzania cyfrowych oznaczeń analitycznych i diagnostycznych. Patent application P‑397026 filed on 17 November 2011.
  • Dębski, M. Oszmaniec, T. Kamiński, P. Garstecki. Sposób przeprowadzania cyfrowych oznaczeń analitycznych i diagnostycznych. Patent application P‑397027 filed on 17 November 2011.
  • Dębski, M. Oszmaniec, T. Kamiński, P. Garstecki. Sposób przeprowadzania cyfrowych oznaczeń analitycznych i diagnostycznych. Patent application P‑397028 filed on 17 November 2011.
  • Korczyk, L. Derzsi, T. Kamiński, S. Jakieła, P. Garstecki. Urządzenie mikroprzepływowe i układ mikroprzepływowy obejmujący jedno lub więcej urządzeń mikroprzepływowych. Patent application P-397028 filed on 26 April 2012.
  • Postek, T. Kamiński, P. Garstecki. Układ do pasywnego podziału kropli na emulsje i znakowania emulsji oraz sposób pasywnego podziału kropli na emulsje i znakowania emulsji. Patent application P-420615 filed on 22 February 2017.
  • T. Kao, P. Garstecki, T. Kaminski, W. Postek, J. Guzowski. Przenośne urządzenie do napędzanego grawitacją podziału kropli na emulsję monodyspersyjnych kropel, sposób pasywnego podziału kropli realizowany w tym urządzeniu i zastosowanie. Patent application P-427606 filed on 31 October 2018.
  • Neun*, P. Zurek*, T. S. Kaminski* (*equal contribution), F. Hollfelder. Ultrahigh throughput screening for enzyme function in droplets in: Enzyme Engineering and Evolution: General Methods, 2019, 643, 317
  • Neun*, T. S. Kaminski* (*equal contribution), F. Hollfelder. Single-cell activity screening in microfluidic droplets in: Methods in Enzymology, 2019, 628, 95-112
  • S. Kaminski, K. Churski, P. Garstecki. Automated droplet microfluidic chips for biochemical assays in: Microdroplet technology and microfluidics: principles, components, and emerging applications in biology and chemistry. Editors: P. Day, A. Manz, Y. Zhang. Springer 28 July 2012 ISBN: 978-1461432647.